
DTIC
AD-A243 444 .F 7-L FCTI F

DLC7 991-

C
Detection of Global

State Predicates

Keith Marzullo*
Gil Neiger**

TR 91-1221
November 1991

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*This author was supported in part by the Defense Advanced Research Projects
Agency (DoD) under NASA Ames grant number NAG 2-593 and by grants from IBM,
Siemens and Xerox. The views, opinions and findings contained in this report are
those of the authors and should not be construed as an official Department of
Defense position, policy, or decision. Authors address: Cornell University
Department of Computer Science, Upson Hall, Ithaca, NY 14853-7501, USA.
**This author was supported in part by the National Science Foundation under
grants CCR-8909663 aand CCR-9106627. Authors address: College of Computing,
Georgia Institute of Technology, Atlanta, Georgia, 30332-0280, USA.

91-18199
/ _1.1 " , - foAr p t hM A

Dv"WLlt~flUnlimited

Detection of Global State Predicates

Keith Marzullo* Gil Neigert

Abstract

This paper examines algorithms for detecting when a property 4' holds
during the execution of a distributed system. The properties we con-
sider are expressed over the state of the system and are not assumed
to have properties that facilitate detection, such as stability.

Detection is done by a monitoring process within the system, which
cannot perceive an execution of a distributed system as a total order:
because of this, we consider two interpretations for "detecting ":

1. There is an execution consistent with the observed behavior such
that 4' was true at a point in that execution. We refer to this
property as possibly 4P.

2. For all executions consistent with the observed behavior, there
was some point in real time at which the global state of the
system satisfied 4b. We refer to this property as definitely D.

In this paper, we give formal definitions for these two interpreta-
tions and present algorithms for them. We give protocols for both
asynchronous and synchronous systems and, for synchronous systems.
give upper bounds on the time between the occurrence of the property
of interest and the time a monitor detects the property.

*This author was supported in part by the Defense Advanced Research Projects Agency
(DoD) under NASA Ames grant number NAG 2-593 and by grants from IBM. Siemens
and Xerox. The views, opinions, and findings contained in this report are those of the
authors and should not be construed as an official Department of Defense position. policy.
or decision. Author's address: Cornell University Department of Computer Science. Upson
Hall, Ithaca, New York 14853-7501, USA.

tThis author was supported in part by the National Science Foundation under grants
CCR-8909663 and CCR-9106627. Author's address: College of Computing. Georgia In-
stitute of Technology, Atlanta, Georgia 30332-0280. USA.

Form Approved
REPORT DOCUMENTATION PAGE 0MB No. 0704-0188

public laonoto burden tor this colledtior Of ontformatis esimated to average I haur per response. indudlig ith e im e vww tIns£tn fidiai. sarcing exatifq data $Gamma. gather"g And
maintainin the data needed. and Wnrt~tig and revieW"n the Colisedlan of Information. Send corithent regarding this burden erae of any other moped of this coltian of kWatmatin.
indluoin suggeatlon tor teduicing this burden, to WaShington Heeouaners Servce. Directorate tor ilorrnalan Operatiland RePOrt. 1215 JeleSan Davis Highwy. Lulle 1204. Astingtn
VA 222024302. and to the Otfice Of Manao*enw010 anW 811890. P&Oerok Aedudlaon PNoted (0704-0Id8), Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I November 1991 Special Technical

4. TITLE AND SUBTIT LE 5. FUNDING NUMBERS

Detection of Global State Predicates NAG 2-593

6. AUTHOR(S)

Keith Marzullo, Gil Neiger

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Keith Marzullo, Assistant Professor REPORTNUMBER
Dept. of Computer Science
Cornell University 91-1221

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

DARPA! ISTO

11. SUPPLEMENTARY NOTES

12a. DISTRiBUTION/AVAILABIUITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Mlaximum 200 words)

Please see page 1 of this report.

14. SUBJECT TERMS 15. NUMBER OF PAGES
23

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION i9. SECURITY CLASSIFICATION 20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNLIMITED)

NSN 7540012804550 Stendind Form 294 filarm 2-"~
Prescribed Oy ANSI Sid. Z3- 51
2W-02

Juslet if!&t I (Jr....Kltt ieL

1 Introduction D-at ' ao

A reactive system [6] is characterized by a control program that interacts
with an environment. The control program is input-driven: it monitors the
environment and reacts to significant events by sending commands to the
environment. There are many examples of reactive systems; for example.
most embedded real-time systems are reactive systems, in which case the
environment is an instrumented physical process. Non-real-time examples
of reactive systems includes monitoring and debugging systems [4.131 and
tool integration services [5,14].

In the Meta project [9,11], we have been developing tools that support
the management of distributed applications through the use of a reactive
system structure. Using Meta, the distributed application and its supporting
services (for example, operating system, network servers, and hardware) can
be instrumented with sensors that access its state and actuators that allow
its state to be changed. Meta also provides a distributed interpreter of
finite state automata that reference these sensors and actuators. Under
Meta, control programs are translated into finite state automata that are
executed by this distributed interpreter. Each interpreter executes guarded
atomic commands of the form (4 - S), meaning execute the action S in a
state satisfying the global state predicate 4.

The problem addressed in this paper arises in the context of Meta: how
can a set of processes monitor the state of a distributed application in a
consistent manner? For example, consider the simple distributed application
shown in Figure 1. Each of the three processes in the application has a
light, and the control processes would each like to take an action when
some specified subset of the lights are on. The application processes are
instrumented with stubs that determine when the process turns its light on
or off. This information is disseminated to the control processes. each of
which then determines when its condition of interest is met.

Meta is built on top of the ISIS toolkit [1], and so we first built the
sensor dissemination mechanism using atomic broadcast. Atomic broadcast
guarantees that all recipients receive the messages in the same order and
that this order is consistent with causality [7]. Unfortunately. the control
processes are somewhat limited in what they can deduce when they find
that their condition of interest holds.

For example, Figure 2 shows a space-time diagram of an execution of
the application shown in Figure 1. In this figure. a process turning its light
on is represented by a rectangle and the process turning its light off is rep-

2

.1

control sensor sensor application
program stub stub process

sensor application 1 9
stub process

control sensor sensor application 1
program stub stub process

Figure 1: A Monitored Distributed Application

resented by a vertical line. Assume, for the moment, that this system is
asynchronous, meaning that there is no bound on message passing delays or
on the relative speeds of processes. In this case, the only ordering relations
between events that can be determined from within the system are those of
potential causality. Two events that are not so related are conczirrent. In
Figure 2, the events a and b are concurrent as are a and c. so the control pro-
cesses could receive these event notifications (as sent by atomic broadcast) in
one of these orders: (a; b; c), (b; a: c) or (b: c: a). Thus. the control processes
may or may not determine that pl's and p2's lights were on simultaneously.
but they will reach the same decision. On the other hand. the events a. d
and e are causally ordered, so the control processes will determine that pl s
and p3 's lights were on simultaneously.

Given a global property *, there are at least two ways th," "'detecting
V can be interpreted:

1. There is an execution (i.e. a linear sequence of events) consistent
with the observed behavior such that 4 was true at a point in that
execution. We will refer to this property as possibly . In the space-
time diagram shown in Figure 2, the pre,jcate possibly (pj"s light on
and p2's light on) holds.

3

a n e

d f

Figure 2: Space-Time Diagram of Application Execution

2. For all executions consistent with the observed behavior, there was
some point in real time at which the global state of the system satisfied

. We will refer to this property as definitely . In the execution
shown in Figure 2, the predicate definitely (p1's light on and P3 "s light
on) holds, since the event of p3 turning its light on happened between
pi turning its light on and pi turning its light off.

Note that definitely § is stronger than possibly . Hence. we will want
to guarantee that if a control program determines possibly 4 for a set of
local states, then no control program will ever determine definitely -,b for
the same states. Note that both of these conditions refer to some past state
or states.

In this paper, we give formal definitions for these two interpretations
and present protocols for them. We first give the protocols for an asyn-
chronous system. These protocols can take an unbounded amount of time
to detect their condition of interest; furthermore. they can have substan-
tial running times because they may have to enumerate may possible global
states. However, no better is possible, in general, due to the nature of
asynchronous systems. We then modify these protocols for a system with
approximately synchronized clocks and bounded message delay. These pro-
tocols are more practical, and we give upper bounds on the time between
the occurrence of the property of interest and the time a control program
detects the property. The existence of such a bound makes these protocols
more useful in real systems.

Snapshot protocols for computing global states of a distributed system [2]
are related to the protocols described in this paper. but they suffer from a
limitation similar to that of the atomic broadcast implementation described

4

above. In particular, if S is the global state computed by the snapshot.
then there exists a legal execution of the system containing S. and so b(S)
implies possibly -P. Snapshot protocols are well-suited for detecting stable
properties, which are those that, once they become true, the remain so. It
may be the case that possibly t holds of an execution, but the snapshot
protocol never detects it (this can happen if t is not stable).

A recent dissertation by Spezialetti [16] looks at a broader set of issues
than those covered in this paper, such as using semantic information (like
relative stability) to determine which local events could make a global prop-
erty true. This dissertation also presents protocols whose specification is
similar to ours. However, her protocols that detects event occurrence suf-
fer from the same limitation as snapshots and the atomic-broadcast-based
protocol described above. Additionally, Spezialetti's protocols do not take
into account the ordering of events established by the underlying system's
communication. We have also looked at the problem addressed in this paper
when environments are continuous state transition systems [8]. Such sys-
tems have the useful property that physical variables can. in many cases, be
interpolated forward. By doing so, the monitor can reason about the current
state of the physical process rather than a past state. and so possibly $ and
definitely t can be determined for the current state.

2 Definitions

We first define the notion of an execution of a system. A system is composed
of processes, some of which are part of the application being run and some
of which are part of the monitoring control program. Let {pi..... p,} be
the set of application processes; for the sake of simplicity, we assume that
there is only one monitoring process, denoted p0. Each pair of processes is
connected by a point-to-point, reliable, FIFO communication link. and we
assume that processes do not exhibit faulty behavior.

Each process pi has a local state si, which changes when an event occurs
at the process. An event may be completely internal to the process. or it
may be the sending or receipt of a message (e.g., "send mI to p' or "receive
M2 from Pk"). For the sake of simplicity, we assume that all message sent in
the system are unique. Process pi's local history. denoted h, is a (possibly
infinite) sequence of states and events

In this case, si is pi's initial state, and the first event it executes is y-

after which the process's state is s, etc. A global state is a tuple S =

(so, si,snS, one for each process. Although the monitor, p0. is a process

in the system, when we refer to a global state, we will usually mean only the
global state of the application, (SI,.., sn). A global history (or history) is

a tuple H = (ho, hi,...., hn) of local histories, one per process.
Although a global history does not specify the relative timings of events

and states at different processes, it does allow us to draw certain conclusions
about these timings. An event e happens before e' (written el - e') if
one of the following is true [7]:

" the events are at the same process and occur in the order indicated.
that is, if i = j and I < m;

" e; is the sending of a message by Pi to pj and e' is the receipt of that

message; or

" there is another event en such that ei - e' and e' - .

The "happens before" relation can be used to reason about the possible
executions associated with a global history. We associate with each global
history a set of linearizations.

A linearization L of a history H is a sequence of global states and local
events

Soe1 l sS 2 ...

that contains exactly the events in H such that, if em - e' in H. then m <

n. Notice that no prefix of L contains the receipt of a message whose sending

does not appear in that prefix. In synchronous systems (see Section 3.3).
there are further constraints on the linearizations of a global history.

(The above definition of linearization assumes that, in the actual ex-
ecution of a distributed system, no two events can occur simultaneously.

This need not be the case; it is possible that events at different processors
may occur at exactly the same time. We can easily extend our definition of
linearization to include such definitions.)

We use the notion of a cut to represent the global states that could have
occurred in the execution. A cut [2] of a global history H is a tuple of
natural numbers (ti, ... , t,) that represents the state of the system after t,

events have executed at process pi; that is. the cut represents the global state
(sl,..., s-). Only certain cuts of a global history can truly correspond to

global states that took place at some real time. A cut (t . t,) of H is
consistent if there is some point in some linearization L of H by which each

6

process pi executed exactly ti events. L is said to pass through this cut. We

will also refer to the associated tuple of events. el a c

cut.

We want to be able to reason about certain facts (such as -possibly

V") being true in different global histories. To this end, we introduce the

following notation. Let H be some global history of the system. To formally
define "possibly I," we introduce the formulas ?$jC, where C is a consistent
cut. Formally, ?4I)C holds for history H if C = (tl, ... , t,) is a consistent
cut of H and 4 holds for the global state (s31. st"). If ?4f C holds for H.
then it is possible that 4) held during the execution that generated H since

it held at some point in some linearization of H.

To formally define "definitely t," we introduce the formulas !tj.4. where
A is a finite set of cuts. Formally, !$IA holds for H if A is a finite set of
consistent cuts of H, every linearization of H passes through some cut in A.
and for all cuts (tl,..., tn) E A, 4, holds for the global state (st.

If !objA holds for H, then t definitely held at some point in the execution
that generated H because it held at some point in all linearizations of H.

Note that the definitions of these formulas satisfy two properties dis-
cussed earlier. The definitely operator ! is clearly stronger than the possibly

operator ? in the following sense: if !4DfA holds for H then for any C E .4.
?4OIC holds for H. Furthermore the two operators are. in a certain sense.

dual. If !--OIA holds for H, then ?4)lC cannot hold for H if C E .4.

Informally, the control process po detects possibly 4t when it can deter-

mine that there is a consistent cut of H that satisfies . and po detects
definitely 4) when it can find a finite set of consistent cuts A such that every

linearization of H passes through a member of A and such that 4D holds
for every member of A. We are investigating the more formal definition of

detection, but we do not present such defintions in this version of the paper.

3 Protocols

As noted above, system consists of n+ 1 processes {Po, p, p, } whose only

method of interaction is by exchanging messages. The process pO monitors
the other processes to determine when some state predicate becomes true.

This state predicate of interest will be of the form possibly ib or definitely
t, where 4) is a predicate over the states of the processes Pi pn.

Each process pi will know how to compute 4D and will send a message
to Po when its local state changes in a way significant with respect to 4. In

particular, a process can determine whether a local event potentially changes

.. *. •I a I I i ll ima • m mallg I f 7

. More formally, let * be a predicate expressed over a global state; that
is, $(sl,. . ., s,,) is true or false. Consider some event et of process pi: recall
that st- 1 is the value of si before e! executes and s4 is the value of si after
e! executes. Event et potentially affirms D if the execution of et could have
made - true:
3si, t . i1 , Si+1, Sn : -4b(si, - l sn S . .. t. ...S)

Similarly, event ei potentially rejects b if the execution of ef could have made
4t false:

t.-I
3 8 1, ... - Si- 1, Si+ l , ... , Sn : t(SI ,-s S it - -Sn) A " (D(.s ,-€ . .. An)

An event potentially changes 4 if it potentially affirms or rejects 4D: such an
event is also called a relevant event.

Note that an event can both potentially affirm and reject 4I. For example.
if n > 4 and 4I is "either two or three processes have their lights on." then
when a process turns its light on, this action both potentially affirms and
rejects 4 even though it is possible that the value of D did not change.

Our detection protocols will have the monitored processes periodically
send to the monitor its state relevant to ,; that is. the message will contain
the values of the variables of pi referred to in 4,. For each process pi (1 < i <
n), process P0 maintains a sequence Qi of such messages received from P.
These messages will also carry information for ordering these states. which
is described next.

3.1 Weak Vector Clocks and Enumeration of Global States

Our protocols will have the monitor enumerate possible global states of the
system by choosing states from each of the message sequences Q, In this
section, we describe how this enumeration of global states is performed. We
use a slight modification of vector clocks (12].

A logical clock [7] is a value T that satisfies the clock condition: given
two events el and e2 and their associated clock values T(el) and T(e,). if
el -- e2, then T(el) < T(e2). We will find it advantageous to use clocks that
also satisfy the converse of the clock condition, that is. clocks that satisfy

(el - e2) €# T(ei) < T(62). I

In particular, such clocks enable one to determine whether or not two events
are concurrent; el and e2 are concurrent if neither el - C2 norC2 -El.

8

Unfortunately, Lamport's logical clocks of [7] (which are implemented using
a single counter) do not satisfy Equation 1.

A logical clock that satisfies Equation 1 can be implemented with a
vector V of n counters. If V is the logical clock associated with process pi.
then Vii] is the number of events that have been executed by pi and V[j].
j . i, is the number of events, that pi "knows" pj has executed. If e-, is
an event at process i, then we use V(ei) to denote the value of , after e,
executed. Given this definition, one can easily show that ei - e3 if and only
if the vector clock of ej records the fact that ei has occurred:

ei - ej # V(ei)[i] V(e,)[i]. (2)

Similarly, if ei and ej are concurrent, then

V(ei)[i] > V(ej)[i] A V(e)[j] > V(e,)[j].

If the set of processes is static, then vector clocks are not hard to im-
plement. Initially, Vi[j] is set to zero for all i and j. Vi[i] is incremented
whenever pi executes an event. Every message sent by Pi is timestamped
with V (let V(m) refer to the timestamp on message ni). If ei is the receipt
of message m, then each Vi[k] (k # i) is set to the maximum of 14k] and
V(m)fk]. As an example, Figure 3 shows the values of vector clocks for the
events of the execution shown in Figure 2.

We can use vector clocks to determine whether or not a set of local
states represents a consistent cut. The set of local states S = (S; s,) is
a (consistent) global state if every pair of local states .s, and s, is potentially
concurrent. In terms of vector clocks. si and s, are potentially concurrent
if V(si)[i] >_ V(sj)[i] and V(s3)[j] 2! V(s,)[j]. Thus, the global state .5 is a
consistent cut if and only if

Vi,j : 1 < i,j < n : V(s,)[i] > V(s9)[i]. (3)

Because we are inteiested only in the causal relationship of events that
potentially change t, we can use a slight weakening of vector clocks [10].
With our clocks, process Pi will increment its local counter V,[i] only when
it executes an event that potentially changes . It will send a message
to po whenever its vector clock changes-that is. either when it executes a
relevant event or when it executes a receive event through which it learns
that another process has potentially changed . The message sent from pi
to po will contain pi's state si after such an event is executed and the vector
time V(si).

(1,0,0) (4,5.0) (6.5.4)
(0,0,0) (2,0,0) (3,5,0) (5.5,4) (7.5.4)

P1 Q

(2,3,0)
(0, 0) (2,5) 4,7.0)

(0,0,0) (0,1,0) (2,4,0) (4,0) .4)

(2.4.3)
(2.4.2)

(0,0,0) (2..4) (.5)

Figure 3: Vector Clocks for Events of Figure 2

Figure 4 illustrates such vector clocks. These clocks are a weakened
version of normal vector clocks-for example. if i = j. they need not satisfy
Equation 2. They do, however, satisfy Equation 3. and this is all that
our protocols need. For the sake of simplicity, the remainder of this paper
assumes that all events-including send and receive events- are relevant
events and thus that our weak vector clocks are true vector clocks.

3.2 Asynchronous Systems

In this section, we assume that processes do not possess local real-time
clocks, that there is no global clock, and that there is no upper bound on
message delays. We note in advance that there is no way to bodnd the
amount of time between the time a condition becomes true and the time the
monitor detects the condition. This is because messages sent to tie monitor
may be arbitrarily delayed.

The protocols for detecting possibly 4 and definitely $P -.e based on the
same data structure: the lattice of consistent global states that correspond
to an observed execution. Such a lattice consists of n orthogonal axes. with
one axis for each monitored process. A point i = (ti, t2..... t,,) in this lattice
corresponds to a consistent global state in which process pi has executed t,

10

(1,0,0) (2.2.2)
(0,0,0) (1,2,0) (1,2,2)

P 1

(1,2,0)
(0,o 0)

(0,0,0) (0,1,0) (2 2.2)

P2 -

(1,2,2)
(1.2.1)

0 2(0,0, 0) .0)

P3 1

Figure 4: Weak Vector Clocks for Events of Figure 2

events. Of course, not all tuples (tt,...'t.) appear in the lattice: this
depends on the causal dependencies among the local states of P. Define the
level of a point t to be the sum of its indices tl + t2 + • .• + t,.

Consider some global history. A linearization of this history is a total
order of (consistent) global states in which exactly one process executes one
event between adjacent global states In terms of the lattice corresponding
to the history, a linearization corresponds to a path in the lattice. where the
level of each subsequent point in the path increases by one. A space-time
diagram of a two-process system and the corresponding lattice of global
states is illustrated in Figure 5. A point Sij represents a state in which
process P1 is in its ith state and process P2 is in its jth state. From the lattice.
it is easy to see that one possible execution corresponds to the sequence of
global states

SOO; So1; S1 1; S21; S22; S23; .5-33 -.543••

For every point 1 in a lattice, there exists at least one linearization that
passes through i. Hence, if any point in the lattice satisfies (P. then po.sibly
* holds. The property definitely - requires all linearizations to pass through
a point that satisfies o. For example, suppose in Figure 5 that the points S543

and S34 both represent states that satisfy (P; then definitely (P holds. This is

11

because S43 and S34 are the only points in level 7 and all linearizations must
pass through some point in that level. Definitely (D also holds if instead the
states represented by points in the set {$53, S.3. S 54 S4 5 } all satisfy 4. This
is because if a linearization does not pass through S53 or S3.5, then it must
pass through S44 and hence through either S54 or S45.

Figures 6 and 7 give the high-level algorithms that a monitoring process
uses to detect possibly 4) and definitely C), respectively, in an n-processor
system. Each algorithm begins by having the monitor distribute the predi-
cate 4) to all processes and then construct the initial global state of level 0.
(It is assumed that the monitor knows a priori each process'; initial state
relevant to 4); if this is not the case. the processes begin by performing a
two-phase synchronization protocol.)

The possibly (D algorithm is straightforward: using the messages it re-
ceives. the monitor iteratively constructs levels of the lattice, using the vec-
tor timestamps accompanying each message (see below). If it ever finds a
global state in the current level satisfying 4). then it reports po.,.sibly 4 and
halts. Note that this protocol is not optimal in its reporting time because
it always waits for a level to be completely enumerated. This restriction is
not necessary and is only done to simplify the presentation of the algorithm
and the one that follows.

The definitely 4D algorithm also iteratively constructs one level at a time.
It attempts to prove that all paths in the lattice pass through a state ;up-
porting C). To this end, when constructing a new level, it adds only states
that do not support ; call the resulting level a reduced h-rd. If the monitor
ever finds an empty reduced level, then the monitor halts and reports ,hf-
nitely 4) (in fact, it can report that 4 definitely holds by the time proce;SeS
execute a total of lvl relevant events, where hlu is the last level entlmerated).

As stated earlier, the implementations of the algorithms in FiViires i
and 7 require a monitored process to send the relevant part of its local tare
to the monitor whenever its vector clock changes. The monitor maintains
sequences of these states, one per process. and assembles them into the
necessary global states. Thus. the monitor must be able to determine when
it can assemble all the reachable global states of a given level and when
it can drop a local state from its sequence because the local state cannot
appear in any further global states of interest. To achieve this. wo ,se weak
vector timestamps developed in the previous section.

Let Qj be the sequence of messages that po has received from p, dtored in
FIFO order. Each state si in a message stored in Q, is labeled with the weak
vector timestamp V(si) of the event that generated that state. Equation 3

12

defines when a set of states (sl, s2,. . s,,), with si from process pi. comprise
a consistent cut. Note that the level of this global state is F=, "(s")[u].

Consider some point t = (t.,..., t,) in the lattice that corresponds to
the state (s, .. . s,). The monitor can enumerate points of the next level
in the lattice as follows. For each process pi, the monitor checks to see if S'.
the state in the (ti + 1)st message of Qj, is potentially concurrent with the
other sj's (if there is no such state in Qi, the monitor cannot complete the
next level until it receives that state). Thus, if

Vj : j 5 i: V(s)[i > V(s1)[i] A V(.s9)[j] _> V(s')[j] (4)

then point (t1,. . . tj + 1'.... t,) is in the lattice at the next level. (Although
many such states will have be checked, it should be clear that a state at some
level in the lattice may follow from several in the previous level: it only has
to be checked once and not for each possible predecessor.)

We can also use vector timestamps to determine when a message con-
taining state si can be eliminated, in the interest of saving space. from a
queue Qj. If the last state in each other queue happens after s, and is not
potentially concurrent with it. then no state subsequently received could
possibly form a global state with si. Thus. the message containing sj can
be removed from Qi as soon as the following holds:

Vj : i $ i : V(Qj.1ast)[i > V(sj)[id,

where Q.Iast is the last state in Qj.
The running time of both detection algorithms are linear in the number of

global states. Unfortunately, the number of global states can be exponential
in the number of processes. Even worse. the worst-case space complexity
is unbounded, since the delivery of a message can be indefinitely delayed
in an asynchronous system. While there are heuristics that can be used to
limit the number of constructed global states. they are intrusive in that they
require some kind of synchronization or limited blocking of the monitored
processes. Real-time bounds on communication and the rate of change of
local states can also be used, as is discussed in the next section.

3.3 Partially Synchronous Systems

In this section, we assume that each process pi has a real-time clock C,. and
that these clocks are approximately synchronized: at any given *,real" time.
the difference between the clocks of two processes is no more than c. We

13

define this formally by modifying our definition of histories and linearizations
slightly. Firstly, all processes (including P0) execute "'tick" events: a process's
local time is the number of tick events that it has executed. If fi, is all event
at pi, then C,(ei) is the number of tick events that pi has executed through
e,. If H is a history with approximately synchronized clocks, then L is a
linearization of H only if, in addition to the usual requirement. in all prefixes
of L and every pair of processes pi and p,, the difference in the number of
tick events executed by the two processes is at most E.

In addition to approximately synchronized clocks, we assume that there
are lower and upper bounds on message transmission times. This means that
if process Pi executes "send m to pj' after it has executed ts tick events, then
when pj executes "receive m from pi," it has executed tr tick events. where
t3 + drmin g tr < ts + dmax for constants drin and dma (both greater than
0). These bounds will be especially important when considering messages
received by the monitor Po. Approximately synchronized clocks can be used
to extend the "happens before" relation to order two events f, and E, even
when there is no explicit communication between pi and p,: thus. we redefine
ei - e j:

ej - e, * (V(e,)[i] _ V(e,)[i]) V (C(e,) + c < C'(c)).1

That is, ej must happen before e. either if e, can causally affect , (as
measured by vector timestamps) or if the clock times corresponding to the
events show that ej must happen first.

Our protocols will be such that each state .si sent by a process p to the
monitoring process po will include the local time C(.s,) at which the event
resulting in si occurred, as well as the vector timestamp V(. j. The monitor
can then use the vector timestamps and the clock times of these states to
enumerate the levels of the lattice. The clock times can be used to further
restrict the pairs of events that are potentially concurrent. With each state
si in Qj, the monitor can determine the latest local time at which p, must
have been in state si (call this L(si)). If there is a state .s, after ., in Q,.
then this is C(s); if si = Qi.last, then this is C - dmax. where C is the
monitor's current local time. If pi had changed its local state between C(.,)
and C - dmax, then the monitor would have gotten another message from p,
by its local time C.

'There is no need to take the transitive closure of the two relations because. if C1r,- > 0.
V(e,)[] < V(e,)[i] and C(e 1)+ < C(ek,) then C(e,)+, < C'[c). and if C1c.,) + e (< Of
and V(e,)UI < V(e&)[jj then C(e,) +(< C(ek .

14

We can now say that two states si and s, received by the monitor are
potentially concurrent if both the vector time stamps and the the real-time
clocks indicate this:

(V(si)[i] > V(sj)[]) A (V(s>[j] I(s,)H)
A ((C(si) - c) : C(s.) < L(s,) + (5)

V (C(sj) - E) C(si):< L(1);+3).

Suppose now that the monitor is seeking to extend the state (s... s,) to
the next level by potentially adding a new state .s. the (ti + I)St state in Q,.
It checks to see if s' is potentially concurrent with the other .J, 's by using
Equation 5 instead of Equation 4. If .s' is potentially concurrent with all
the si's, then the state (si,. .. s s,) is added to the next level of the
lattice; otherwise, it is not. An exception to the last point is if .s, = Q,.h.,t
and s was not deemed to be potentially concurrent because its latest time
was too early. For example, suppose E = I and

C(s') = 3; L(s') = 4; C(sJ) = 6: L(.%J) = 7.

Because s = Qi.last, L(s) = C - dmax; as time passes on the monitor's
clock, L(si) may grow so that the two states would be judged potentially
concurrent. In such cases, therefore, the decision about whether to add
the state (s,... , , ... s,) to the lattice is postponed until either another
message arrives from pi or the monitor's clock advances to a point where a
decision can be made. Until then, the level cannot be completely enuumer-
ated.

The conditions possibly * and definitely P can now be detected exact v
as in the previous section. Each processor sends its state to the monitor
whenever its vector clock changes, it includes with this message its vector
time and the number of tick events it has executed. The monitor then uses
this information to construct levels of the lattice. using the properties of the
"potentially concurrent" states discussed above. It then reports "possibly ('"
or "definitely " exactly as it would in the case of asynchronous svstenis.

We now argue upper bounds on detection times. Suppose that S =
(sl,..., ,,) is a global state such that the last event leading to this state
occurs when the monitor's local time is t. No process's local clock is higher
than t + c when one of the events leading to S occurs. so p0 receives all
messages necessary to construct this state by local time t + (+ drnax. Local
time t + 2c is the latest that a process could execute an event that could be

15

potentially concurrent with one leading to S; thus, by time t + 2c + dmax. P0
will have completed the construction of the level containing S.

Suppose that possibly t holds of a history; this means that some consis-
tent cut of the history supports 4). If the last event leading to this cut occur
when the monitor's local clock is t, then the monitor will finish enumerating
the level of S at its local time t+ 2E+dmax, detecting possibly 4t at that time
(actually, it could detect it at time t + c+ dmax because, as noted earlier. tie
possibly protocol does not need to enumerate an entire level once it finds a

state satisfying 4).
Suppose that definitely 4) holds of a history; this means that there is some

finite set of consistent cuts, all supporting 4). through which all linearizations
pass. If the last event leading to the last of these occurs when the monitor's
local time is t, then the monitor must detect definitely 4P by time t+2(+dm.x
on its local clock; this is because the last state in the level of the last cut
will be enumerated by that time, and the protocol will halt.

The above discussion does not consider the amount of local computation
required by the monitor. In general, this depends on the relation between
and the rate at which processes can potentially change 4). If clocks are closely
synchronized, then the monitor will never have to consider more than a few
state changes by any one process. If instead processes potentially change 4D
very often, then the monitor may have to do significant local computation.

4 Conclusions

This paper has defined two means (possibly and definitely) by which global
states in an asynchronous or loosely synchronous system can be detected.
It presented algorithms by which a monitor can detect these properties ili
both types of systems. There are other means of detection that are also of
interest. For example, we have been investigating a third type of detection.
called currently, that occurs when the monitor learns a condition actually
holds at the time of detection. One can modify our definitely algorithms
for partially synchronous systems to detect currently b? requiring that ap-
plication processes forgo potentially rejecting the condition being detected
for a well-defined amount of time. We can obtain currently algoritlinis for

asynchronous systems only by forcing application processes to block.
These algorithms may be complex, both in terms of computation and

storage. Although we are investigating optimizations of these algorithnm..
we maintain that significant complexity is required for detection to be coin-
plete. In the future, we plan to look at the kinds of information that maY

16

simplify the detection. If the property that is to be detected. P. has cer-
tain nice properties, then detection may be simplified. If the monitor has
some knowledge of the how and when the application program potentially
changes the condition to be detected, then this can also simplify detection.
We have also been investigating casting the detection problem into temporal
and epistomological logics. We believe that such a characterization will aid
in finding sets of properties under which detection can be simplified.

Although our original application was towards distributed application
management, we have also been investigating the use of these detection
protcols in the scope of debugging distributed systems [3]. The constraints
of a debugger are slightly different from those that arise in tool integration
or distributed application management. For example. invasiveness is tradi-
tionally considered untolerable, yet in tool integration, temporarily blocking
an application may be acceptable.

The work most similar in spirit to ours are the protocols developpd by
Spezialetti [16]. In particular, her event holding condition is the same spec-
ification as our protocol for detecting currently Cb. and the specification of
her event occurrence condition is similar to the specification of our po.sibl!J
4) algorithm. However, her protocols for non-local event detection are in-
complete, in that they can miss conditions that in fact held. For example.
the execution in Figure 8 shows such an execution. If the messages in this
figure correspond to the messages generated in establishing simultaneous
regions [15], then her protocol will not detect .x, = .r. Yet in fact dtfinid'/1
X1 = X2 holds.

17

References

[1] Kenneth P. Birman and Thomas A. Joseph. Reliable communication
in the presence of failures. ACM Transactions on Computer Systems.
5(1):47-76, February 1987.

[21 K. Mani Chandy and Leslie Lamport. Distributed snapshots: determin-
ing global states of distributed systems. AC Transactions on Com-
puter Systems, 3(1):63-75, February 1985.

[3] Robert C. B. Cooper and Keith Marzullo. Consistent detection of global
predicates. In Proceedings of the AC!/O,VR W1orkshop on Parallel and

Distributed Debugging, pages 163-173. ACMiONR. 1991.

[4] C. J. Fidge. Partial orders for parallel debugging. In SIG-
PLAN/SIGOPS Workshop on Parallel and Distributed Debugging.
pages 183-194. ACM, 1988.

[5] David Garlan and Ehsan Ilias. Low-cost. adaptable tool integration
policies for integrated environments. In Proceedings of the Fourth Sym-
posium on Software Development Environments. pages 1-10. ACM. SIG-
SOFT, 1990.

[6] David Harel and Amir Pnueli. On the development of reactive svstenis.
In Krzysztof R. Apt, editor, Logics and .Ifodels of Concurr tit SysteIn.,.
volume 13 of NATO ASISeries F. pages 477-498. Springer-Verlag. New
York, 1985.

[7] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the AC. 21(7):558-565. Julv 1978.

[8] Keith Marzullo. Tolerating failures of continuous-valued sensors. AC'L
Transactions on Computer Systems, 8(4):284-304. November 1990.

[9] Keith Marzullo, Robert C. B. Cooper. Mark Wood. and Kenneth P. Bir-
man. Tools for distributed application management. IEEE Computer.
24(8):42-51, August 1991.

[10] Keith Marzullo and Laura Sabel. Using consistent subcuts for detecting
stable properties. In Proceedings of the Fifth Workshop on Distributed
Algorithms and Graphs, Octohpr 1991. To appear.

18

[11] Keith Marzullo and Mark Wood. Tools for distributed application man-
agement. In Proceedings of the Spring 1991 EurOpen Conference. pages
477-498, May 1991.

(121 Friedemann Mattern. Time and global states of distributed systems. In
Michel Cosnard et. al., editor, Proceedings of the International Work-
shop on Parallel and Dist,ibuted Algorithms. pages 215-226. North-
Holland, October 1989.

[13] Barton P. Miller and Jong-Deok Choi. Breakpoints and halting in dis-
tributed programs. In Proceedings of the Eighth International Confer-
ence on Distributed Computing Systems. pages :316-323. IEEE. 198.

[14] Steven P. Reiss. Connecting tools using message passing in the FIELD
program development environment. IEEE Software. 7(4). July 1990.

[151 M. Spezialetti and J. P. Kearns. Simultaneous regions: A framework for
the consistent monitoring of distributed computations. In Proceeding., of
the Ninth International Conference on Distributed Computing .Sqtern-.
pages 61-68. IEEE, 1989.

[16] Madelene Spezialetti. A Generalized Approach to .lfonitoring Dis-
tributed Computations for Event Occurrences. Ph.D. dibsertation. Uni-
versity of Pittsburgh, 1989.

19

Soo

P P2 S1o Sol

S,, -502

0 S21 .5'1 2 503

S31 522 .513 .504

S 41 S32 523 ,514

2 2 N 7 K
S42 S 3 3 ,524

3 3'43 534

4 4 S53 S944 35

XS3 S54 -54 5 -536

S S 6 4 ,55 .546

6 6 K K K \
... S6.5 556 ...

Figure 5: An execution and the corresponding lattice of global states.

20

Possibly(O): begin
current := global state (sO, so, SO)
ivl := 0;

do no state in current satisfies 4 -

last := current
lvi := Il + 1;
current := states of level lvi reachable from a state in last:
od

end;
report Possibly b

Figure 6: Algorithm for detecting Possibly .

Definitely(O): begin
last := global state (sO, so,... so
remove all states in last that satisfy 4:
lvI := 1;
% Invariant: last contains all states of level IN' - I that are accessible
% from (so, so I.s) without passing through a state satisfying (P
do last 4 { } -

current := states of level lvi reachable from a state in last
remove all states in current that satisfy b:
ivi := lvi + 1; last := current
od

end;
report Definitely 0

Figure 7: Algorithm for detecting Definitely .

21

Xi:=4 x1 :=3

x 2 :=3 X2 :=4

Figure 8: 4 = (XI =X 2)

22

